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Despite recent progress, estimating species spread and the risk of different sites becoming

invaded remains a major challenge in invasion biology. One of the most common problems

is sparse data: we will have rarely sampled all areas for invaders and consequently do not

know where all the invaded sites are. This is problematic because the entire system of

sites determines invasion probability for any single site—unsampled sites can act as both

sources and sinks of propagules. Thus, the difficulty is to predict invasions across the entire

system with only sparse data. In this manuscript, we develop an approach to make use of

partial data to forecast new invasions, and compare it with default ways of handling missing

information in biological invasions. We demonstrate that it is possible to estimate spread

with only a fraction of sites sampled. We find that reliability depends on the number of

invaded sites sampled and that there is a tendency to underestimate the effect of propagule
Survival analysis

Monte Carlo

U

pressure when Allee effects are present.
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. Introduction

here is increasing concern that the extent and rate of disper-
al, mediated through human activity, has increased to such
degree that global changes are occurring in which natural

nd human systems are unable to adapt (Lodge and Shrader-
rechette, 2003). Although most species will not establish and
ill not cause problems if they do (Williamson, 1996), others –

ermed invasive species – have the potential to cause immense
nvironmental (e.g., loss of global biodiversity) and economic
amages (Pimentel et al., 1999; Sala et al., 2000).

Due to the clear importance of invasive species, there is
need to predict where invaders are most likely to establish
hemselves. In order to establish, propagules need to be
ransported to new areas (termed propagule pressure) and
hey need to survive, reproduce, and form a self-sustaining
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population. The probability of forming a self-sustaining
population is determined by population dynamical processes,
such as Allee effects and stochasticity, which are important
at small population sizes (i.e., the propagules reaching the
new area). Unfortunately, population dynamics are typically
studied long after establishment, when population sizes are
large and when processes such as Allee effects are no longer
important. Further, detailed information on vital rates are
difficult to obtain for the early stages of invasions, given that
there are not many individuals and they would be difficult to
sample. Finally, given that we are typically interested in large
spatial scales across many areas, estimating vital rates for the
elf.mcgill.ca (D.G. Delaney).

caution.
Due to these difficulties, researchers have been develop-

ing predictive models to identify areas at risk, without explicit
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plete knowledge of invasion status. We now consider analysis
given unsampled sites. The typical way to treat unsampled
sites is to ignore them. This can be done either by treating
sampled sites as the entire system (Schneider et al., 1998;
1 9 8 ( 2 0 0 6 ) 229–239

MacIsaac et al., 2004; Muirhead and MacIsaac, 2005) or treating
unknown locations as uninvaded (Anderson and Martinez-
Meyer, 2004; Drake and Bossenbroek, 2004). The consequences
of such simplifications remain unknown. Given the impor-
tance of forecasting invasions and the potential consequences
of propagule pressure to unsampled sites, it is timely to exam-
ine the ability of these approaches to describe and forecast
invasions.

We have several objectives: first, to develop a method
to minimize the impact of missing data on the estimation
of spread across a system; second, to examine the conse-
quences of missing data on “default” methods and com-
pare them to the method developed here. Default meth-
ods include treating sampled sites as the entire system,
treating unsampled sites as uninvaded, and using only
Monte Carlo simulations. If differences are not large, more
complex, computer intensive methods may not be needed;
third, to examine the factors affecting the accuracy of our
approach to characterize the system (sensitivity analysis). For
instance, we test whether it is the fraction or the number
of sites sampled that is important; fourth, to suggest future
directions to further improve our ability to forecast inva-
sions.

2. Materials and methods

2.1. Background model

We used the modelling approaches developed in Leung et al.
(2004) as our starting point, so that we could focus on the
important extensions to the theory rather than recreating
existing work. The primary extension was to minimize the
impact of missing data (unsampled sites) on the estimation of
spread across a system.

To begin, we first used gravity models as a mechanistic
basis to generate vector movements. Gravity models are well
known in Geography (Thomas and Hugget, 1980) and may
be more applicable for discrete spatial units (e.g., lakes) with
human vectors (e.g., boaters), compared to other methods
of modeling spread such as reaction-diffusion and integro-
difference models. Instead of modeling continuous land-
scapes and spread, gravity models simulate an interconnected
matrix of sites and discrete spread and capture the follow-
ing ideas: vectors are more likely to visit closer sites than
ones farther away and also prefer some sites over others, due
to characteristics such as lake size or fishing opportunities.
The visitation rate to any single site is positively related to
the vector populations around that site, but is moderated by
other possible destinations that a vector might visit instead.
Thus, the simulated system used in this paper mimicked sys-
tems such as inland lakes and boater vectors. Leung et al.
(2004, 2006) provided detailed equations for gravity models
and demonstrated the utility of this approach for estimating
recreational boater movement patterns to predict biological
invasions.
230 e c o l o g i c a l m o d e l l i n

incorporation of population dynamics (Lewis and Pacala, 2000;
Drake and Bossenbroek, 2004; Leung et al., 2004; Muirhead
and MacIsaac, 2005). For instance, instead of direct estimation
of vital rates, researchers have related propagule pressure to
successful and failed invasions (Kolar and Lodge, 2001), deter-
mined the probability of establishment for a given propag-
ule pressure, and forecast establishment in new areas (Leung
et al., 2004). Propagule pressure itself is difficult to mea-
sure directly. Thus, given that human activity is the major
vector of non-indigenous species, researchers have mod-
elled human movement patterns as a surrogate of propag-
ule pressure, using so-called “gravity” models (Schneider et
al., 1998; MacIsaac et al., 2004; Muirhead and MacIsaac, 2005;
Leung et al., 2006). As the name suggests, gravity is used
as an analogy for human traffic to a given area. Traffic is
moderated by the mass or attractiveness of a body (e.g., a
lake with fishing will be more attractive than a lake with-
out fishing), the distance between bodies–people prefer to
travel shorter distances than longer ones, and the other bod-
ies that might “pull” traffic away (e.g., other lakes that peo-
ple might visit). Gravity models have been used success-
fully in Geography for the past couple of decades to predict
human behaviour (Thomas and Hugget, 1980). The integra-
tion of gravity models with models to estimate the proba-
bility of establishment has shown promise for well studied
systems such as zebra mussels in Michigan (Leung et al.,
2004).

Unfortunately, most species are not as well studied as
zebra mussels, and typically, we know the invasion sta-
tus only for a subsample of sites. For instance, there are
over 250,000 lakes in Ontario, Canada; in a given water-
shed, there may be several thousand lakes. Generally, we
cannot measure all sites and we therefore cannot know the
entire pattern of invasion. However, we can feasibly sam-
ple several hundred sites. For instance, as part of a larger
project in Canada (the Canadian Aquatic Invasive Species
Network), there are plans to sample 500 lakes to deter-
mine the invasion status for Bythotrephes longimanus. How-
ever, it is not known whether this sampling effort will be
useful, and to what extent we will be able to draw infer-
ences regarding spread across an entire watershed or the
entire province of Ontario. Intuitively, one might think that
500 data points would provide abundant statistical power.
However, the problem goes beyond standard sampling the-
ory because the entire system is dynamic and interconnected.
Unsampled locations can act as both sources of propagules
and alternative destinations for human vectors, modifying
the propagule pressure to uninvaded sites. Put another way,
it is the entire system of sites that determines the proba-
bility of invasions to any single site. Thus, techniques are
needed to make predictions when only a fraction of sites
have been sampled and invasion status of many sites is
unknown.

In this manuscript, we extend techniques developed by
Leung et al. (2004). Leung et al. (2004) estimated the proba-
bility of establishment of zebra mussels using relatively com-
Second, we considered the probability of establishment of
propagules that arrived to a new site. If propagules each have
an independent chance of establishment, the total probabil-
ity of establishment (E) is the complement of all propagules
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ailing to establish:

(Qj,t) = 1 − (1 − p)Qj,t (1)

here p is the probability of a single propagule establishing
nd Q is the number of propagules arriving at site (j) at time
t). Q is determined by the underlying gravity model. Eq. (1) is
he same as the standard asymptotic curve

(Qj,t) = 1 − e−(˛Qj,t ) (2)

here ˛ is a shape coefficient and is equal to −ln(1 − p). Addi-
ionally, processes such as the Allee effect might be present,
nd propagules might interact with one another such that
here is disproportionately low probability of establishment at
ow population sizes (Dennis, 2002). This corresponds to a “lag
hase” at low population sizes, and can be described through
n additional shape parameter (c), using the Weibull function
Dennis, 2002)

(Qj,t) = 1 − e−(˛Qj,t )
c

(3)

These equations were used successfully by Leung et al.
2004) to describe and predict invasions by zebra mussels.
hrough the use of theoretic simulations, we set parameters
alues for ˛ and c to generate patterns of invasions (i.e., these
ere the “true” underlying parameter values). We then deter-
ined how well we could recapture these underlying values

iven different treatments of unsampled sites.
Third, where applicable, we used logic behind survival

nalysis and maximum likelihood techniques to recapture the
nderlying parameter values. Survival analysis allows the use
f the entire data set available—the presence and absence
f invaders and the timing of invasion. Maximum likelihood
llows us to determine the parameter values that maximized
he probability of generating the observed pattern of invaded
nd uninvaded lakes.

Specifically, as in Leung et al. (2004), we considered Hj, the
robability given by the model of an empirical observation for
ite j. We assumed that there was a probability of invasion dur-
ng each year dependent upon propagule pressure Q. For sites
hat were invaded, Hj was the joint probability of becoming
nvaded at time t but remaining uninvaded up until t, given
he model.

j = E(Qj,t)

t−1∏
i=1

[1 − E(Qj,i)] (4)

here E was defined in Eq. (3). Thus, in this manuscript, we
etermined the probability of invasion of each site j given
odel values of ˆ̨ and ĉ, which were estimates of the true

arameter values used to generate the pattern of invasion.
or locations that did not become invaded for the time frame
T), Hj was the joint probability of remaining uninvaded until
, given a model.
j =
T∏

i=1

[1 − E(Qj,i)] (5)
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The “best” values of ˆ̨ and ĉ were those that minimize the
negative log-likelihood values (L) (i.e., the maximum likeli-
hood values),

min(L) = −
S∑

j=1

ln(Hj) (6)

where ln(Hj) was summed across all sites (S).

2.2. Extensions: treatment of unknown sites and
analysis

We considered four treatments for sites with unknown inva-
sion status.

2.2.1. Treat sampled sites as whole system
We treated the sampled sites as the whole system. Here, analy-
sis was limited only to the subset of sites with known invasion
status. Henceforth, this treatment will be denoted as WHOLE.
This treatment has occurred repeatedly in the literature (e.g.,
Schneider et al., 1998; MacIsaac et al., 2004; Muirhead and
MacIsaac, 2005). We applied the approach described above,
estimating parameter values ˆ̨ and ĉ using only sites with mea-
sured known invasion status.

2.2.2. Treat unsampled sites as uninvaded
We treated unsampled sites as uninvaded. Henceforth, this
treatment will be denoted as UNINVADED. This treatment has
occurred in studies forecasting invasions over large geograph-
ical areas (Anderson and Martinez-Meyer, 2004; Drake and
Bossenbroek, 2004). We applied the approach described above,
estimating parameter values ˆ̨ and ĉ using all sites, but treat-
ing unsampled sites as uninvaded.

2.2.3. Monte Carlo simulations
As an intuitive approach, we simply simulated invasions from
the initial invasion event to time T, for different values of
ˆ̨ and ĉ, using gravity models and Eqs. (1)–(3). This resulted in a
series of invasions for each site j, which were compared to the
“empirical” observations. This approach will be denoted SIM.
Similar Monte Carlo approaches have appeared in the litera-
ture (e.g., Bossenbroek et al., 2001).

The simplest metric of fit was to compare the number
of known invaded sites, between simulations and observed
(“observed” was the invasions generated using the “true” val-
ues of ˛ and c).

min(L) = 1
G

G∑
n=1

abs

⎛
⎝ S∑

j=1

Oj −
S∑

j=1

Ij

⎞
⎠ (7)

Oj was the actual invasion status of site j, and Ij was the
invasion status predicted from simulations using ˆ̨ and ĉ. Oj

and Ij were equal to one if site j was invaded and zero
if it was uninvaded. S was the number of sampled sites,

G was the number of simulations, and L was the met-
ric of fit. In each case, we chose the parameter values
( ˆ̨ and ĉ) that minimized the value of L, maximizing the cor-
respondence between model predictions and observed inva-
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sions. We averaged across G simulations. We also exam-
ined two other metrics—comparing the invasions status

for each individual site
(

min(L) = (1/G)
∑G

s=1

∑S

j=1abs(Oj − Ij)
)

and comparing the year of invasion (Yj) for each site

j
(

min(L) = (1/G)
∑G

s=1

∑S

j=1abs(Yj − Yj)
)

. All three metrics

resulted in similar results so we only presented the first and
simplest metric (Eq. (7)).

2.2.4. Monte Carlo, maximum likelihood, survival
analysis mix (MCMSAM)
Arguably, we can improve upon the three default treatments
of missing data discussed above. To do so, we integrated Monte
Carlo simulations with survival analysis and maximum like-
lihood (MCMSAM). Monte Carlo approaches might improve
upon the WHOLE and UNINVADED approaches by simulating
invasions for unsampled sites rather than assuming that those
sites either do not exist or are uninvaded. However, the use of
Monte Carlo approaches in isolation (SIM approach) does not
incorporate the available data to the maximum extent possi-
ble. The new invasions in a given time interval (t) will depend
upon the invaded sites in t − 1, which can act as sources of
propagules. As such, we should use the real invasion status for
all sampled sites, reserving the Monte Carlo simulations only
for the unknown sites, and then determine the probability of
observing the invasion pattern in the next time interval, for
a given model. We modified the equations for survival anal-
ysis to incorporate Monte Carlo simulations with the entire
available time series of invasions for sampled sites. We used
maximum likelihood to find the best fitting parameters.

A formal recipe is as follows:
For each test parameter set ( ˆ̨ and ĉ):

(1) For time interval t, use Eqs. (1)–(3) to determine the prob-
ability of invasion (E(Qj,t)) at time t. Compare each known
site that is uninvaded at time t − 1, with observed inva-
sion status in the current time interval (Oj,t). Thus, if a
site is invaded (Oj,t = 1), we use the probability of inva-
sion estimated by the model (E(Qj,t)); if the site is unin-
vaded (Oj, t = 0), we use the probability of being uninvaded
(1 − E(Qj,t)). The probability (Rt) of the pattern of new inva-
sions during time interval t given the model is the joint
probability:

Rt =
N∏

j=1

E(Qj,t)

1 − E(Qj,t)
if

Oj,t = 1

Oj,t = 0
(8)

where N is the number of sampled sites that are unin-
vaded at time t. We evaluate only uninvaded sites because
previously invaded sites would have already been taken
into account in previous time intervals. We evaluate inva-
sion success or failure in the current time interval only,
because we are interested in probabilities of invasions at
time t given the system at t − 1.
(2) Use E(Qj,t) (Eq. (3)) and test parameters ˆ̨ and ĉ to simulate
invasion of all sites in the system.

(3) After Rt has been calculated, force all known sites to the
observed invasion status (Oj,t) at time t. For each of N unin-
1 9 8 ( 2 0 0 6 ) 229–239

vaded sites at time t,

Ij,t = Oj,t (9)

where Ij,t is the invasion status for sampled site j at time t
used in the simulations.

(4) Iterate through steps 1–3 for all time intervals for which
data exists (t = 1 to T).

(5) Calculate the log-likelihood value for simulation g:

Ug =
T∑

t=1

ln(Rt) (10)

In the special case of full knowledge, where invasion his-
tory is known for all sites, steps 1–5 results in identical
calculations as Eqs. (4) and (5).

(6) Repeat steps 1–5, and take the average of all G simulations.
Find the values of ˆ̨ and ĉ that minimizes the negative aver-
age log-likelihood.

min(L) = − 1
G

G∑
g=1

Ug (11)

Below, we determined the validity of these four approaches.

2.3. Simulations and tests

2.3.1. Bias and variability
We examined the ability to recapture the underlying param-
eter values ˛ and c, examining both bias and variability. We
measured the deviation (ı) between the predictions based on
methods described above and the real parameter values, using
the formula:

ı = ln

(
p̂

p

)
(12)

where p̂ was the predicted parameter value ( ˆ̨ or ĉ) estimated
using any of the four treatments discussed above, and p was
the true underlying parameter value (˛ or c, respectively). We
used the log ratio so that deviations were proportional to each
true parameter value and were comparable across parame-
ter values. For instance, if ˛ = 1, ˆ̨ = 0.5 underestimated the
true value � by a factor of two, and ˆ̨ = 2 overestimated ˛ by a
factor of two. Biologically consistent values of ˆ̨ and ĉ theoret-
ically range between zero and infinity (increasing propagule
pressure increases the probability of establishment or has no
effect; probability of establishment ranges between zero and
one).

We conducted W simulations, repeating the procedures for
each approach described above. Bias (B) (i.e., the tendency to
underestimate or overestimate results) was measured as the
mean value of ı across all simulations W.

1
W∑
B =
W

w=1

ıw (13)

Variability (V) was measured using the coefficient of vari-
ation of p̂ across all simulations W, and was a metric of the
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eliability for any single run. We used the coefficient of varia-
ion to control for differences in the magnitude of p̂.

= �p̂

(1/W)
∑W

w=1p̂
(14)

We compared bias and variability for each of the four treat-
ents described above. We present values for true parameters
= 1 and c = 1. We tested ˛ and c values ranging from 0.3 to
.3 but obtained similar findings, so do not present them (but
ee sensitivity analysis). We modelled a system S = 1500 sites
ith K = 10 vector populations over T = 3 time intervals, and

e-simulated the system W = 50 times. For each of the simula-
ions, we redistributed sites and populations randomly across
he landscape using the gravity model. For each simulation, we
xamined seven different levels of knowledge or proportion of
ites sampled (� = 1, 0.5, 0.25, 0.125, 0.062, 0.031, 0.015). For each
f W simulations of the system, and each of the seven levels of
nowledge, for SIM and MCMSAM, we used G = 10 simulations
o determine the optimizations in Eqs. (7) and (11).

.3.2. Forecasting
e examined the ability to forecast new invasions for each
pproach described above. We also examined the ability
o predict invasions in sampled sites, to allow comparison
f all four methods. Predictions of invasions of unsampled
ites were only possible using SIM or MCMSAM. We con-

ig. 1 – Bias and variability for approaches 1–4: WHOLE (diamon
egree of bias (Eqs. (12) and (13)) in estimation of parameter ˛ (p

he estimate of ˛ (panel c) and c (panel d) are shown. Values clos
nderestimation, and positive values indicate overestimation. Va
maller values indicate less variation. Approach MCMSAM gene

akes sampled.
8 ( 2 0 0 6 ) 229–239 233

ducted W = 100 simulations. For each simulation, we simu-
lated S = 1500 sites and K = 10 populations over T = 3 time inter-
vals to fit the model parameters (see Eqs. (1)–(11)), and then
generated the probability of invasion in the next time inter-
val t = 4. We used ˛ = 0.3, c = 1, and d = 2, and � = 0.1 (i.e., 10% of
the sites had been sampled). These values were chosen such
that there was a good mix of invaded and uninvaded sites, and
we could best distinguish between predictive abilities. As our
metric of predictiveness, we compared the actual invasions in
year T = 4 to the probabilities predicted from each treatment,
using Eq. (8). The expected probabilities for each treatment
were based on the best fit ˆ̨ or ĉ for each approach and the
known set of invaded and uninvaded sites in year T = 3. For
SIM and MCMSAM that were based on simulations, we used
the best fit ˆ̨ or ĉ, simulated invasion histories 100 times using
these values, and took the average probability of invasion to
determine E(Qj,t). We only considered sites (N) that were unin-
vaded at time t − 1, as we were only interested in forecasting
ability.

2.4. Sensitivity analysis

We conducted a sensitivity analysis to determine which fac-

tors might affect the behaviour of our model. First, to separate
out the effect of percent knowledge versus sample size, we
examined different system sizes (S = 500, 1000, 2000, 4000) at
four levels of knowledge (� = 1, 0.5, 0.25, 0.125), using a baseline

d), UNINVADED (triangle), SIM (circle), MCMSAM (square).
anel a) and c (panel b), and degree of variation (Eq. (14)) for
er to zero indicate less bias. Negative values indicate
riation is estimated using the coefficient of variation.

rally has the lowest bias. Knowledge is the proportion of
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Fig. 2 – Scatter plot of ability to probabilistically forecast
invasions in the future. Each point represents the joint
probability (ln-transformed) of observing the pattern of
invaded and uninvaded sites in the next time interval.
Values closer to zero indicate a closer match to the pattern
of invaded and uninvaded sites (i.e., higher probabilities
assigned to sites which actually became invaded and lower
234 e c o l o g i c a l m o d e l l

set of simulations (˛ = 1, c = 1, K = 10, G = 10, W = 30). For exam-
ple, we examined the question: does measurement of 25% of
1000 sites give us the same, less, or more accuracy compared
to 25% of 2000 sites? Although the proportion of sites sampled
is the same, the absolute sample size is twice as much with
2000 sites. We also examined the sensitivity to “true” values of
˛ and c. We present results for ˛ and c values, ranging between
0.3 and 2.3 (in steps of 0.5), at two levels of knowledge (� = 1,
0.25).

3. Results

3.1. Bias, variability, and forecasting

We found that approaches WHOLE, UNINVADED, and SIM
resulted in substantial bias compared to MCMSAM. SIM and
WHOLE tended to overestimate parameter ˛, whereas UNIN-
VADED tended to underestimate it (Fig. 1a). For comparison,
using back-transformation (exp(B), see Eqs. (12) and (13)), bias
for MCMSAM ranged from 0.71 to 1.01 (unity is unbiased),
whereas bias for approach UNINVADED ranged from 1.01 to
3.35 (i.e., three times larger than the actual parameter value).
SIM and WHOLE were even more biased in estimates of ˛.

Estimates of parameter c were less biased than those of ˛ for
approaches WHOLE, UNINVADED, and MCMSAM for knowl-
edge levels down to 12.5% (Fig. 1b). Here, SIM overestimated
c, whereas WHOLE, UNINVADED and MCMSAM tended to
underestimate c. Again, however, MCMSAM was generally less
biased than the other approaches. Using back-transformation,
across the entire range examined, bias for MCMSAM ranged
from 0.80 to 1.01 whereas bias for UNINVADED ranged from
0.12 to 1.01. As above, SIM and WHOLE were even more biased.
Thus, MCMSAM provided relatively unbiased estimates of
parameter values, whereas the other approaches did not. With
full knowledge, WHOLE, UNINVADED, and MCMSAM were
mathematically identical, and had little bias.

In the case where bias is large (e.g., for SIM, WHOLE, and
UNINVADED), variability is less important as the approach is
already flawed. Nevertheless, we presented changes in vari-
ability with knowledge for all approaches (Fig. 1c and d). With
full knowledge, variability was low and increased as knowl-
edge decreases. SIM generally had higher variability. WHOLE,
UNINVADED and MCMSAM had similar variability, except at
low levels of knowledge (% sites sampled). The coefficient of
variation of MCMSAM was as high as 40 and 25% of the esti-
mated value for ˛ and c, respectively, at 1.5% knowledge.

The better fit of MCMSAM was reflected in the ability to
forecast new invasions (Fig. 2). MCMSAM assigned higher
probabilities of invasion to sites that actually became invaded
and lower probabilities to sites which did not, compared to
the other approaches, as reflected by better likelihood val-
ues. In comparison, the lowest likelihood value for MCMSAM
was four to five times better than the lowest value for SIM
or WHOLE and 30 times better than the lowest value for
approach UNINVADED. On average, MCMSAM (P = −65) had

likelihood values 20% better than WHOLE (P = −80), 50% better
than SIM (P = −99), and two orders of magnitude better than
UNINVADED (P = −984) (P-values closer to zero indicate better
predictiveness).
probabilities assigned to sites which did not). Approach
MCMSAM generally had the best forecasting ability.

Given these results, MCMSAM was clearly superior to the
other simpler treatments. Comparisons across a range of
other parameter values yielded similar conclusions (data not
shown). Thus, the sensitivity analysis was presented only for
MCMSAM.

3.2. Sensitivity analysis

We first examined the effect of system size (S) at each level of
knowledge, to test the hypothesis that it is the number of sites
sampled rather than the level of knowledge that affects relia-
bility. Contrary to expectations, bias and variability increased
in ˆ̨ as system size increased (and concurrently number of
sites sampled increased) (Fig. 3a and b). Nevertheless, in com-
parison with magnitudes of bias in the other approaches
(Fig. 1), the degree of bias observed was small. For c, the degree
of bias was small, and there was no obvious relation between
bias or variability and system size (Fig. 3c and d). Because
these results were based on simulation, and bias was an aver-
age deviation from the true parameter values, we repeated
the simulations in order to see if the patterns were due to
variability. We found similar relations that did not change our
conclusions.

We conducted additional analyses to identify the poten-
tial mechanism for this unexpected result and found that
the number of sampled invaded sites was most important
(Fig. 4), rather than system size or total sample size (includ-
ing both invaded and uninvaded sites). The higher bias for
larger systems occurred because there were fewer invasions,
due to initially more uninfested sources, a lower probability of
visiting an infested source, a lower propagule supply to unin-
vaded sites, and a subsequent lower number of invasions (at
least for the number of time intervals we examined). Thus, we

next examined whether there was evidence that system size
(S = 1000, 2000, 4000) was important after controlling for num-
ber of sampled invaded sites (Z) (Z = 50, 100, 200, 400, generated
by beginning the analysis as soon as the appropriate number
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Fig. 3 – The effect of system size (S) on bias and variability across different levels of knowledge (� = 1, 0.5, 0.25, 0.125), for ˛

(a and b) and for c (c and d). Bias values closer to zero indicate no bias (calculated using Eqs. (12) and (13)). Variability was
estimated using coefficient of variations (Eq. (14)). Values closer to zero indicate less variation. Sample sizes of 500 are
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ampled.

f known sites became invaded). We used the same baseline
et of simulations, but set knowledge levels to � = 0.5 (Fig. 5a
nd b). We also examined the effect of knowledge level (� = 1,
.5, 0.25, 0.125) by setting system size S = 4000 (Fig. 5c and d).
e found that reliability was not related to the system size (S)

Fig. 5a), but was related to knowledge level (�) after control-

ing for number of known infested sites. Thus, we conducted
he remainder of the analysis controlling for known infested
ites (Z = 250), and determined the consequences of different
and c.

ig. 4 – Scatter plot of estimated parameter value of ˛( ˆ̨ ) vs.
umber of known invaded sites, shown on a log scale.

ˆ = 1 indicates no bias (the true underlying parameter
alue was ˛ = 1).
f 4000 by circles. Knowledge is the proportion of lakes

The effect of real parameter values ˛ and c on bias and
variability was dependent upon knowledge level (Fig. 6). With
complete knowledge, low values of c (c = 0.3) resulted in the
highest bias and highest variability (Fig. 6a–d). ˆ̨ was con-
siderably more biased and variable than ĉ at c = 0.3 (compare
Fig. 6a and b with Fig. 6c and d). Using back-transformation,
for our worst set of parameter values, ˆ̨ underestimated ˛ by
80%, whereas ĉ underestimated c by only 30%. Variability of ˆ̨
was about four times greater (max CV for ˆ̨ = .57) than ĉ (max
CV for ˆ̨ = .16), when c = 0.3. For other values of c, the degree of
variability was similar for both ˆ̨ and ĉ. For values c > 0.3 exam-
ined, the model performed very well, with full knowledge.
In contrast, with more limited knowledge (� = 0.25), biases
(underestimates) could also occur at high values of c (i.e.,
when Allee effects were stronger, c = 2.3) (Fig. 6e–h). As above, ˆ̨
had higher biases and greater variability than ĉ. As one might
expect, variability was much greater than for full knowledge
� = 1.

These results were based on stochastic simulations where
bias was estimated by taking an average across simulations.
Thus, to examine whether the magnitude (and direction) of
bias observed was actually due to the high variability, we
re-ran simulations with c = 0.3 for full knowledge (� = 1) and
c = 2.3 for partial knowledge (� = 0.25). For full knowledge, we
obtained similar results. Thus, the estimated bias was not

due to high variability with � = 1, c = 0.3. However, for � = 0.25,
c = 2.3, the estimated bias was much more variable and typ-
ically larger than for other values of c. It usually underesti-
mated the true values. Thus, we limited the interpretation of
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Fig. 5 – Scatter plot showing the effects of system size (S) and knowledge (�) on estimated parameter value at different
numbers of known invaded sites (Z = 1000, 2000, 4000). System size did not have a pronounced effect after controlling for
the number of known invaded sites for either the estimate of ˛ (a) or c (b). Knowledge (c and d) had a pronounced effect,

wled
erlyi
with estimates closer to the true values with increasing kno
Estimates of ˛( ˆ̨ ) and c(ĉ) of 1 indicates no bias (the true und

general patterns for low � and high c to less reliability (i.e.,
higher variability and/or bias).

4. Discussion

Predicting the risk of invasion is difficult because typically not
all sites have been sampled. This can be especially problematic
for biological invasions for the following reasons: invasions
of new sites are dependent upon propagule pressure, which
in turn is dependent upon the number of previously invaded
sites. Unfortunately, we usually do not know all the sites that
are invaded, and therefore we do not know propagule pressure,
and we cannot easily calculate the probability of invasion to a
new site. Yet, the importance of this lack of knowledge has not
been formally examined. Before more complex approaches
are used, we should make sure there are tangible benefits
compared to simpler approaches. The three treatments of
unknown invasion status that we chose as comparison points
for our more complex approach (MCMSAM) were appropri-
ate because they are simple and have been used commonly
in the literature. Generally, these simpler treatments yielded
substantially poorer results (discussed below).

Some techniques used to estimate invasion progress have
often been parameterized by treating unsampled sites as unin-
vaded (UNINVADED) (Anderson and Martinez-Meyer, 2004;

Drake and Bossenbroek, 2004). In studies estimating invasi-
ble environments, this assumption may work (Anderson et al.,
2003; Anderson and Martinez-Meyer, 2004), given the absence
of interactions between sites. However, for questions involv-
ge. Knowledge is the proportion of lakes sampled.
ng parameter values were ˛ = 1, c = 1).

ing invasion progress, where unsampled sites can contribute
propagules and influence new invasions, this assumption is
inaccurate, and should be avoided. Our study suggests that the
ability to capture underlying parameters is seriously reduced
and the ability to forecast invasions is poor when equating
unsampled with uninvaded sites.

The approach of treating the sampled sites as the entire
system (WHOLE) (i.e., considering only sampled sites) also
contained biases (Schneider et al., 1998; MacIsaac et al., 2004;
Muirhead and MacIsaac, 2005). The ability to recapture under-
lying parameter values was compromised and forecasting new
invasions in sampled sites was less accurate than MCMSAM.
However, the major limitation was that extrapolation using
estimated parameters to other unsampled lakes was not pos-
sible. For instance, Canadian researchers are planning a large
scale sampling project for the invader, Bythotrephes, consisting
of 500 lakes in Ontario (N Yan, personal communication, 2005).
Yet, there are over 250,000 lakes in Ontario, and 2000 lakes
in the 2EB watershed where Bythotrephes is most prevalent
and where sampling will be conducted. Applying the WHOLE
approach to the 500 lakes project, could give insight into new
invasions within those 500 lakes, but would not permit extrap-
olation to the rest of the lakes, of which we are also interested.
In contrast, the MCMSAM approach would provide better fore-
casts of invasions to those same 500 sampled lakes, as well as
projections to other unsampled lakes.
The approach of simply simulating invasion progress
numerous times (SIM) (Bossenbroek et al., 2001; Seymour et
al., 2005) also yielded considerably poorer results than MCM-
SAM. Invasions are stochastic and previous invasions affect
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Fig. 6 – Sensitivity of bias and variability to values of estimate of ˛ and c, shown at two levels of knowledge: � = 1 (panels
a–d) and � = 0.25 (panels e–h). Knowledge is the proportion of lakes sampled. Bias was calculated using Eqs. (12) and (13).
Variability, as estimated by the coefficient of variation, was calculated using Eq. (14).
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uture invasions. In contrast to SIM, MCMSAM used the actual
nvasion status across time for sampled lakes to estimate the
robability of new invasions.

In comparison with the simpler approaches discussed
bove, MCMSAM yielded significant improvements. Thus,
CMSAM provided the best way to forecast invasions given

imited data, even if the accuracy of estimates was not uniform
cross conditions. From a management point of view, this is
ighly relevant. For instance, the results suggest that we may
e able to characterize the invasion dynamics in the 2EB water-
hed (2000 lakes) by sampling 500 lakes. Further, it suggests
hat it may be possible to forecast invasions in unsampled
akes as well as sampled ones. However, the results suggest
hat we cannot extrapolate to the entire lake system in Ontario
250,000 lakes), even if environmental conditions were homo-
eneous. This limits the geographical range in which sampling
hould be conducted.

The results of this study provide guidance for factors to
onsider. For example, the results suggested that it was the
umber of invaded sites sampled that was important, rather

han the system size or total sample size (uninvaded and
nvaded) per se. The ramifications were: first, these results indi-
ated that the problem of unsampled sites was not simply a
ampling theory issue, given that sample size was not directly
related model accuracy. Instead, other factors related to the
invasion dynamics were more important to capture (i.e., it was
the invasion pattern across the entire system that affected
the probability of invasion to any single site). Second, some
systems are very large. Nevertheless, it may be feasible to esti-
mate spread across this entire system since system size is not
itself a limiting factor. Second, due to sensitivity to the num-
ber of known infested sites, invasion progress may need to
be advanced before we can reliably estimate establishment
parameters. Research that increases reliability for low num-
bers of infested sites would be advantageous.

Parameter c, which describes the Allee effect, influenced
the ability to capture the underlying parameters. Bias occurred
when c was low (c = 0.3). However, the importance of this bias is
questionable, as c values below unity do not have an obvious
biological interpretation. Specifically, when c = 1, propagules
have an independent chance of establishing a new population.
When c > 1, the shape of the curve describes the Allee effects.
Bias also occurred when Allee effects were present (high c) and
knowledge was limited—there was a tendency to underesti-

mate the effect of propagule pressure. However, the estimate
of c was considerably more robust. Therefore, because we have
confidence in c, and bias in ˛ occurred only at high c, we could
be reasonably confident in the model results when c is low.
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4.1. Future directions

The approach described in this manuscript provides the next
step in estimating establishment probability. Further research
should be conducted in a number of areas: increasing our
forecasting ability; determining conditions that may affect
the reliability of forecasting approaches, in addition to those
identified in this manuscript (i.e., knowledge level, number
of invaded sampled sites, and Allee effects); and applying
these approaches to the design of monitoring programs. This
manuscript addressed the important issue of missing data.
However, there are other issues that characterize real data
sets that also need work, such as issues of detection (i.e., does
absence of detection really indicate absence of invasion),
and inconsistent sampling effort (i.e., different sites might
be sampled a different number of times and in different
years).

Bayesian approaches that incorporate the uncertainty dis-
tribution might improve forecasts. In some conditions, the
likelihood profile may be dispersed and many parameter val-
ues may result in similar likelihoods. In such a case, max-
imum likelihood techniques may be more strongly affected
by stochasticity, whereas Bayesian techniques would explic-
itly incorporate the vagueness of our information. Bayesian
approaches could be implemented using Markov Chain Monte
Carlo (MCMC) (Gilks et al., 1996). To apply MCMC, one would
simulate the invasion process for each site across all time
intervals for each test value of ˆ̨ and ĉ. Unfortunately, given
that thousands of simulations are required to estimate a sin-
gle posterior distribution, and thousands of sets of simulations
are required for sensitivity analysis (e.g., number of invaded
lakes, true values of ˛ and c, etc.), validating and determining
the importance of Bayesian techniques would be a monumen-
tal computational task. Nevertheless, the results of this study
will allow us to focus our analyses to areas where we think
Bayesian techniques will provide an advantage (i.e., when
maximum likelihood approaches are biased or too variable).
In such cases, the added complexity of Bayesian techniques
may be warranted.

In this study, we highlighted knowledge level, number of
invaded sampled sites, and Allee effects as important consid-
erations. Other factors may also influence forecasting reliabil-
ity. For example, environmental heterogeneity (each site has a
different ˛ or c value) and spatial heterogeneity (the spatial dis-
tribution of sites might be clumped) likely occurs and is worth
exploring. In this manuscript, we only included heterogeneity
related to propagule pressure in terms of site attractiveness
and distances to source populations.

Finally, this work should be integrated with empirical work
to define sampling procedures. For instance, should one con-
duct a randomized stratified sampling protocol (Rand, 2000;
Mac Nally and Horrocks, 2002)? Should one sample along
the propagule pressure gradient? What are the ramifications
of each approach? Likely, the invasion pattern will not be
randomly distributed and different sampling strategies may
provide greater power. Interactions between modellers and

empiricists will keep the models relevant to real world prob-
lems, provide direction to empirical studies, and provide
potential empirical tests with which to validate the expecta-
tions of the models.
1 9 8 ( 2 0 0 6 ) 229–239
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